
MAAV Vehicle Documentation

MAAV

Contents

1 Introduction 1

2 Reference Frames 2

2.1 Arena Reference Frame 2

2.2 Euler Angles 2

2.3 Vehicle Reference Frame 2

2.4 Using a Rotation Matrix 2

3 Sensor Suite 3

3.1 LiDAR Lite 3

3.2 Logitech c920 3

3.3 Microstrain 3DM-GX3-25 IMU 3

3.4 Pixhawk Px4Flow 4

3.5 Hokuyo URG-04LX-UG01 4

4 Microcontrollers and Processors 4

4.1 Atmel ATMEGA xx 4

4.2 Axiomtek PICO831-N2800 4

4.3 Texas Instruments TM123xx 5

5 Electrical System 5

5.1 Power System 5

6 Control Software 5

6.1 Flight Modes 7

6.2 proportional-integral-derivative (PID)
Control 7

6.3 Kalman Filtering 7

7 Navigation Software 7

7.1 Field of View Transformation 7

7.2 Frame of Reference Mapping 9

7.3 Ground Robot Detection 11

7.4 Ground Robot Time To Edge 11

7.5 Localization 11

8 Airframe 14

8.1 Propeller Guards 14

8.2 Landing Gear 14

1 Introduction

MAAV’s vehicle is complicated. This document aims
to be both an overview of the vehicle as well as a
“deep dive” into the design, math, and algorithms of
the vehicle. Conventions used in this document are
given in Table 1.

Table 1: Document Conventions
x arena frame x position
y arena frame y position
z arena frame z position
ẋ arena frame x velocity
ẏ arena frame y velocity
ż arena frame z velocity
ẍ arena frame x acceleration
ÿ arena frame y acceleration
z̈ arena frame z acceleration
xB vehicle frame x position
yB vehicle frame y position
zB vehicle frame z position
ẋB vehicle frame x velocity
ẏB vehicle frame y velocity
żB vehicle frame z velocity
ẍB vehicle frame x acceleration
ÿB vehicle frame y acceleration
z̈B vehicle frame z acceleration
φ roll
θ pitch
ψ yaw

1

2 Reference Frames

2.1 Arena Reference Frame

Looking at the arena from above, view the green goal
line on the bottom, red line on the top and white
out-of-bounds lines on either side. The global x-axis
points up along the white lines from the goal line to
the red line. The global y-axis points right, and the
global z-axis points down into the ground. The origin
of the world is the bottom-left corner (i.e. the inter-
section of the goal line with the left boundary line).
This follows the right-hand-rule used to derive the
control and state estimation algorithms. The global
reference frame is given in Figure 1.

Figure 1: Global/Arena Reference Frame

All control algorithms are derived in this world
frame (e.g. waypoints are given w.r.t. the world and
any necessary frame changes for sensor values are per-
formed to give feedback to the controller in the world
frame).

2.2 Euler Angles

We now define φ as the rotation about the x-axis, θ as
the rotation about the y-axis, and ψ as the rotation
about the z-axis. Positive values are defined by the
right-hand-rule – stick your thumb along the positive
axis and the fingers curl in the positive direction of
rotation.

2.3 Vehicle Reference Frame

The vehicle’s x-axis points out of its front. It’s y-axis
points out the right side. The z-axis points down
out of the vehicle. This is common for many control
algorithms in aerospace.

The global and body reference frames were cho-
sen such that at a roll, pitch, and yaw of 0 radians,
the frames converge. Also, the IMU on the vehicle
is physically mounted such that its reference frame is
exactly the same as the vehicle’s local frame. Thus,
the only frame changes that are necessary are be-
tween the local vehicle frame and the global frame.
These frame changes can be easily determined using
the rotation matrix obtained from the Microstrain
IMU when it is polled for a sensor reading which is
created from filtered measurements.

2.4 Using a Rotation Matrix

Let R be a 3x3 matrix describing the rotation from
the vehicle to the arena frame that is parameterized
by the 3 Euler angles of φ, θ, and ψ.

Given a 3D vehicle frame vector vB = [xB yB zB]T

(or their derivatives), we get the 3D arena frame vec-
tor v = [x y z]T by the equation:

v = RvB (1)

Given v, we can get vB as follows:

vB = R−1v = RTv (2)

Since rotation matrices are orthogonal, their in-
verse is their transpose, so we can computationally
simplify Equation 2 by using RT .

2

3 Sensor Suite

The sensors used on the vehicle are described in the
following subsections. Each subsection describes the
data given by the sensor as well as the experimentally
observed noise.

3.1 LiDAR Lite

3.1.1 Purpose and Measurements

The LiDAR Lite is a laser distance measurement sen-
sor used for measuring the altitude of the vehicle.

It senses zB and thus needs a frame rotation to
transform it into z as shown as follows:

z = zB cosφ cos θ (3)

where φ and θ are extracted from IMU measurements
obtained at the same timestep as the LiDAR mea-
surement. The current sample rate from the LiDAR
is 50 Hz and is communicated to from the Tiva MCU
via I2C.

3.1.2 Noise Characterization

This section provides the LiDAR noise characteriza-
tion at three different distances. For each distance,
10000 data points were measured and the mean,
stadard deviation, and variance were calculated. The
results are provided in Table 2.

Table 2: LiDAR Lite Data Characteristics
Actual Mean

Distance Measurement Std. Dev. Variance
(cm) (cm) (cm) (cm2)
52.00 51.507 0.61711 0.38083
95.00 95.931 0.66139 0.43743
139.00 140.76 0.68728 0.47236

The errors between the actual distance and the
mean measurement recorded by the LiDAR Lite are
within the +/-2.5cm error specified in the product
documentation[4].

3.2 Logitech c920

3.3 Microstrain 3DM-GX3-25 IMU

3.3.1 Purpose and Measurements

The IMU incorporates a 3degrees-of-freedom (DOF)
accelerometer, 3DOF gyroscope, and a 3DOF magne-
tometer (compass) along with a microprocessor into
one unit.

It is used to provide measurements for
ẍB , ÿB , z̈B , ωx, ωy, ωz, φ, θ, and ψ, where ωx, ωy,
and ωz are the angular rates about the body frame
axes of the vehicle (note that these are not φ̇, θ̇, and
ψ̇).

We communicate with the IMU via a serial
(UART-RS232) connection and obtain raw values for
vehicle-frame accelerations and angular rates as well
as a filtered/processed rotation matrix from the pre-
vious measurement frame to the current measure-
ment frame. From this matrix of values, filtered by
the IMU’s onboard processor doing Kalman Filter-
ing, we extract the actual φ, θ, and ψ of the vehicle
which are then used to rotate the body-frame sen-
sor values into the arena frame in which the control
algorithm operates in.

3.3.2 Noise Characterization

Data was collected from the IMU while resting on a
level table. Table 3 shows the mean, standard devia-
tion, and variance for each type of measurement for
12000 data points.

3

Table 3: IMU Data Characteristics
Raw Accelerometer Measurments

Type Mean Std. Dev. Variance
(g) (g) (g2)

ẍB 0.003367 7.0405e-04 4.49569e-07
ÿB -0.012307 9.3020e-04 8.6528e-07
z̈B 1.001700 0.0031851 1.0145e-05

Raw Gyroscope Measurements
Type Mean Std. Dev. Variance

(rad/s) (rad/s) (rad2/s2)
ωx -4.3443e-04 0.0026131 6.8284e-06
ωy 0.0031502 0.0025510 6.5076e-06
ωz -0.0016228 0.0025015 6.2576e-06

Filtered Euler Angle Measurements
Type Mean Std. Dev. Variance

(rad) (rad) (rad2)
φ -0.0060886 7.5494e-04 5.6994e-07
θ 3.1279 4.8600e-04 2.3620e-07
ψ 1.7800 0.011527 1.3288e-04

Table 4: Hokuyo URG-04LX-UG01 Spec’s
Measuring Area 20 to 5600mm, 240o

Step Angle 0.36o

Accuracy for:
60 to 1000mm +/- 30mm

1000 to 4095mm +/- 3% of measurement
Scanning Time 100ms

3.4 Pixhawk Px4Flow

3.4.1 Purpose and Measurements

3.4.2 Noise Characterization

3.5 Hokuyo URG-04LX-UG01

3.5.1 Purpose and Measurements

3.5.2 Noise Characterization

4 Microcontrollers and Proces-
sors

4.1 Atmel ATMEGA xx

This 8-bit microcontroller (MCU) runs the killswitch
code. It reads in two pulse width modulation (PWM)
signals; one from the throttle of our RC controller,
and one from a shoulder button on the controller.
The signal coming from the throttle tells the vehicle
whether to enable or disable the power to the mo-
tors. The signal from the shoulder button toggles
the vehicle between a completely autonomous mode
and an assisted autonomous mode. The ATMEGA
toggles a general purpose input output (GPIO) which
drives four P-Channel MOSFET (PFET)s, which are
responsible for putting the vehicle in a ”killed” state.

4.2 Axiomtek PICO831-N2800

4.2.1 Physical Characteristics

This system on chip (SoC)[2] runs the navigation
code. It has 2 cores running at 1.8GHz, 4GiB random
access memory (RAM), and a 64GiB solid state drive
(SSD). A list of model numbers for the hardware is
given in Table 5.

Table 5: AxiomTek PICO831 Hardware Model Num-
bers

Part Model Number

RAM G.Skill F3-8500CL7S-4GBSQ
SSD Crucial CT064M4SSD3
WiFi Intel 633ANHMW

4

The PICO831 requires heatsinking, although the
stock heatsink shipped by Axiomtek is overkill. The
heatsink designed by Michigan Autonomous Aerial
Vehicles (MAAV) reduces mass by around 60%, yet
maintains similar thermal properties due to increased
surface area and the plentiful flow of room tempera-
ture air in the system’s operational environment.

4.2.2 System Administration

The SoC[2] runs the Ubuntu 16.04 operating system.
This is mainly for access to the network stack imple-
mentation and to run the navigation software. Since
Ubuntu 16.04 uses systemd for booting and manag-
ing system services, MAAV uses systemd to manage
the starting, stopping, and logging for the naviga-
tion software. Instructions for deploying the naviga-
tion software are contained in the navigation source
code repository, but common administration opera-
tions are given here. Instructions for using SSH to
obtain a shell on the Operating System (OS) run-
ning on the PICO831 are also given in the navigation
source code repository. In order to view the current
status of the navigation software, start the naviga-
tion software, or stop the navigation software, use
‘systemctl’ as shown in Figure 4.2.2.

Check the s t a t u s (i . e . running or stopped) o f the so f tware
sudo sys t emct l s t a t u s maav−nav . s e r v i c e

Stop the so f tware
sudo sys t emct l stop maav−nav . s e r v i c e

Star t the so f tware
sudo sys t emct l s t a r t maav−nav . s e r v i c e

Restart the so f tware
sudo sys t emct l r e s t a r t maav−nav . s e r v i c e

In order to view the current log output of the nav-
igation software, use ‘journalctl’, as shown in Figure
4.2.2.

Developers should utilize the systemd
documentation[5] for more information on using
systemd to manage the vehicle properly. In addition,

Open up the log output , going d i r e c t l y to the end
sudo j o u r n a l c t l −e −u maav−nav . s e r v i c e

utilize the Debian Handbook[1] for information
on properly managing a Debian or Debian-derived
system like Ubuntu.

4.3 Texas Instruments TM123xx

This MCU is an ARM Cortex-M4F, which was chosen
because of its integrated floating point unit (FPU)
for flight control. It is responsible for taking in all
sensor data inputs, processes them, sends commands
to the DJI attitude controller, and relay back relevant
information about the quadrotor state to the Atom.
The data in question may change with each iteration
of the vehicle. The Tiva is responsible for all control
and state estimation algorithms.

4.3.1 Pinout for MAAV Spine Circuit Board

Table 6 shows the pinout of the Tiva and components
connected to it for the 2016 verison of the circuit
board on the vehicle. Table 7 shows the pinout for
the summer 2015 version of the circuit board which
is still in use for flight testing.

5 Electrical System

5.1 Power System

The vehicle is powered by a Thunder Power
TP6600-4SP+25 lithium polymer (LiPo) battery.

6 Control Software

This section describes the flight modes and the two
main algorithms implemented in the controller that
make the vehicle fly–the PID controller, a feedback
controller that commands the various inputs to the
DJI Naza-M Lite attitude controller (which in turn
commadns the motors), and the Kalman filter which
filters and fuses the various sensor readings to es-
timate the final state of the quadrotor. This final

5

Table 6: 2016 Tiva-Spine Pinout
Pin Label Function Component
47 PB2 I2C0 SCL

Px4, Lidar
48 PB3 I2C0 SDA
61 PD0 SSI1 CLK

SD Card
62 PD1 SSI1 FSS (CS)

63 PD2 SSI1 RX (MISO)

64 PD3 SSI1 TX (MOSI)

58 PB4 SSI2 CLK

Light Board
57 PB5 SSI2 FSS (CS)

1 PB6 SSI2 RX (MISO)

4 PB7 SSI2 TX (MOSI)

17 PA0 UART0 RX
Atom

18 PA1 UART0 TX
16 PC4 UART1 RX

IMU
15 PC5 UART1 TX
49 PC3 TDO

JTAG
50 PC2 TDI
51 PC1 TMS
52 PC0 TCK
9 PE0 ADC AIN3 Battery

59 PE4 DJI PPM (M0 PWM4) DJI
19 PA2 RC 1 (Pitch)

Pilot RC

20 PA3 RC 2 (Roll)

21 PA4 RC 3 (Thrust)

22 PA5 RC 4 (Yaw Rate)

23 PA6 RC 5 (Manual Button)

24 PA7 RC 6
14 PC6 KILL 3 (Kill Signal)

Kill RC
13 PC7 KILL 5 (Mode)

10 PD7 SOFT KILL Kill Switch
43 PD4 OPT SW1

Switches44 PD5 OPT SW2
53 PD6 OPT SW3
29 PF1 RED LED

LED30 PF2 BLUE LED
31 PF3 GREEN LED

state is the feedback sent to the controller and to the
navigation software to be used as the actual state of
the vehicle in various algorithms and decision-making
logic.

Table 7: 2015 Tiva-Spine Pinout
Pin Label Function Component
47 PB2 I2C0 SCL

Px4, Lidar
48 PB3 I2C0 SDA
61 PD0 SSI1 CLK
62 PD1 SSI1 FSS (Test Point) SD Card
63 PD2 SSI1 RX (MISO) &
64 PD3 SSI1 TX (MOSI) Light Board
43 PD4 SD Card CS
10 PD7 Light Board CCS
17 PA0 UART0 RX

Atom
18 PA1 UART0 TX
16 PC4 UART1 RX

IMU
15 PC5 UART1 TX
49 PC3 TDO

JTAG
50 PC2 TDI
51 PC1 TMS
52 PC0 TCK
58 PB4 ADC0 CH10 Battery
1 PB6 DJI PPM (M0 PWM4) DJI

19 PA2 RC 1 (Pitch)

Pilot RC

20 PA3 RC 2 (Roll)

21 PA4 RC 3 (Thrust)

22 PA5 RC 4 (Yaw Rate)

23 PA6 RC 5 (Manual Button)

24 PA7 RC 6
59 PE4 KILL 1

Kill RC

60 PE5 KILL 2
6 PE3 KILL 3 (KILL SIG)

7 PE2 KILL 4
8 PE1 KILL 5 (Mode)

9 PE0 KILL 6
5 PF4 OPT SW1

Switches45 PB0 OPT SW2
46 PB1 OPT SW3
29 PF1 RED LED

LED30 PF2 BLUE LED
31 PF3 GREEN LED
8 PE1 DJI Motor 1

Output from DJI
7 PE2 DJI Motor 2
6 PE3 DJI Motor 3

60 PE5 DJI Motor 4

6

6.1 Flight Modes

The controller supports three different flight modes,
Manual, Assisted, and Autonomous. These modes
can be toggled using the shoulder button and cen-
tral knob on the Pilot RC controller. The Pilot
RC controller shoulder button toggles between Man-
ual and Assisted/Autonomous, while the Pilot RC
controller center knob toggles between Assisted and
Autonomous when the shoulder button is in Assist-
ed/Autonomous Mode.

6.1.1 Manual Mode

In Manual mode, the RC input is passed straight
through to the DJI. The LED will be solid green in
Manual mode.

6.1.2 Assisted Mode

In Manual mode, the RC input for Z is treated as a
desired height, the RC input for Roll and Pitch are
treated as a desired X and Y rates, and the RC input
for Yaw is passed straight through to the DJI. The
LED will be solid red in Assisted Mode. Using the
onboard DIP switches, an alternate Assisted Mode
can be activate in which Z is treated as desired height
and Roll and Pitch are passed straight through to the
DJI.

6.1.3 Autonomous Mode

In Autonomous mode, the RC input is ignored in
favor of commands from the Navigation board. The
LED will be solid blue in Autonomous mode.

6.2 PID Control

PID stands for Proportional-Integral-Derivative con-
trol. The generic PID algorithm is laid out as follows.
Given a desired target state for the system, called a
setpoint, xs and the current state of the system x, the
PID controller minimizes the error e between the set-
point and current state and produces a control output

u to enact upon the system at time t as follows:

e(t) = xs(t)− x(t) (4)

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD ė(t) (5)

where KP , KI , and KD are the proportional (P),
integral (I), and derivative (D) gains, respectively.
These are tunable hyperparameters for the algo-
rithm that are set during an empirical tuning pro-
cess. There are different versions of this control law
that have been used in practice. One such version
involves the substitution of the time derivative of the
state ẋ instead of using ė to reduce the noise in the
error derivative that occurs near zero-crossings. This
is a strategy that is used in MAAV’s control software,
and results in the following modification to equation
5:

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KDẋ(t) (6)

This algorithm is used in many instances to control
the full quadrotor–one for each value and rate within
the x, y, z DOFs as well as for the state of the ψ
DOF. Within each DOF, the PID instances are cas-
caded such that the value PID output becomes the
setpoint of the rate PID, and the rate PID’s output
(which is a force in that DOF) is used to calculate
the final commands to the DJI.

6.3 Kalman Filtering

7 Navigation Software

MAAV’s navigation software controls the vehicle at a
high level, planning the mission, observing the state
of the arena, and accepting and applying user con-
trol. The material in this section covers the theoret-
ical parts of the software. If you are trying to deploy
and run software on the vehicle, see 4.2.

7.1 Field of View Transformation

This section describes the mathematics behind the
transformation between the different fields of views
for the camera. The math is quite simple and only
requires high school trigonometry.

7

7.1.1 Camera Fields of View

Let us first define what we mean by fields of view
(FOV). The word “field” is somewhat confusing, as
we will see, since these quantities are actually angles,
not lengths.

There are three FOVs that we are concerned with:
the horizontal, vertical, and diagonal FOVs. We will
define the horizontal FOVs in detail here; the defini-
tion for the rest are analogous. We also refer to the
horizontal FOV as the x FOV, and the vertical FOV
as the y FOV.

Consider Figure 2. Point P is the location of the
camera. Let pointO be a point along the center of the
camera’s view. Plane ABCD contains point O and
is perpendicular to OP . Also, we let plane ABCD
be the largest plane that fits in the camera’s view.
In other words, if we were to let the camera take an
image right now, AB, BC, CD, DA will be the right,
bottom, left, and top edge of the image, respectively.

Let FH be a line containing O that is parallel to
the horizontal plane. Let EG be a line containing
O that is parallel to the vertical plane. From simple
high school geometry, we know that E, F , G, H are
midpoints of AD, AB, BC, CD, respectively. We
then define the horizontal FOV of the camera, fx, be
the angle 6 HPF .

Similarly, we define the vertical FOV fy as the an-
gle 6 EPG (Figure 3) and the diagonal FOV fd as
the angle 6 DPB (Figure 4).

Figure 2: Camera x FOV

Figure 3: Camera y FOV

Figure 4: Camera Diagonal FOV

7.1.2 Transformation Algorithm

Once the definitions are clear, it should be easy to
see that we can relate fx, fy, and fd by the following
equation:

fd = 2 arctan

(√
tan2

(
1

2
fx

)
+ tan2

(
1

2
fy

))
(7)

Also, if we know the length w of AD, the length h
of AB, as well as fd, we can find fx and fy using the

8

following equations:

fx = 2 arctan

(
w tan

(
1
2fd
)

√
w2 + h2

)
(8)

fy = 2 arctan

(
h tan

(
1
2fd
)

√
w2 + h2

)
(9)

7.2 Frame of Reference Mapping

7.2.1 Introduction

This section describes the algorithm that the nav-
igation software uses to transform two dimensional
camera coordinates to three dimensional coordinates
in the vehicle’s reference frame. First, the algorithm
corrects the radial distortion from the camera. Sec-
ond, the algorithm generates a unit vector in the x
direction of the vehicle reference frame. Third, the
camera rotates this vector down to the coordinate
of interest in the image, assuming the image is cen-
tered on the vehicle reference frame x-axis. Next,
the vector is rotated according to the vehicle’s rota-
tion matrix, and then again according to the camera’s
vehicle-relative rotation matrix. Finally, the position
vector of the vehicle and of the camera relative to
the vehicle are added. The result of this series of
computations is the global coordinate of the object
of interest in the given image from the camera.

7.2.2 Details

In general, the camera reference frame has (0, 0) in
the top left corner of the image, with x increasing to
the right and y increasing down. The camera refer-
ence frame is shown in Figure 5.

The camera reference frame contains no height in-
formation at all. To deal with this lack of data, we
make three assumptions. The first assumption is that
the cameras mostly capture the ground, so z = 0.
The second assumption is that every object of in-
terest, for which the coordinates in vehicle reference
frame are desired, is on the ground (z = 0). The
third and final assumption is that the camera loca-
tions in the vehicle reference frame are known with a
negligible error.

Figure 5: Camera Reference Frame

To find the coordinates in the vehicle reference
frame, the navigation software creates a ray origi-
nating from the camera and going to the object of
interest in the image.

Let the camera field of view, in radians, be f , with
fx the field of view along the x-axis, and fy the same
for the y-axis; the experimentally determined radial
correction factors be given by c1, c2, c3; the camera
coordinates of the object of interest be xc and yc; the
arena coordinates of the object of interest be xI and
yI . The radial correction factors are computed using
an OpenCV utility[3].

It is useful to normalize the image coordinates and
re-map them to be offsets xo and yo from the center
of the image:

xo =
xc
fx
− 1

2
yo =

yc
fy
− 1

2
(10)

Using the distance of this re-mapped coordinate
from the center of the image r from Equation 11, the
radial correction factor can be applied:

r =

√(
xo −

1

2

)2

+

(
yo −

1

2

)2

(11)

c = 1 + c1 · r2 + c2 · r4 + c3 · r6 (12)

The new, useful camera coordinates xu and yu after
this correction is applied are:

xu = xo · c yu = yo · c (13)

9

With these corrected coordinates, real position
may now be computed. The real position is com-
puted by rotating a ray to point from the center of
the vehicle to (xI , yI), projecting the ray until its z-
component is zero, and then adding the position vec-
tors of the camera and the vehicle. For the following
transformations, the camera is in the vehicle’s refer-
ence frame, and the vehicle is in the global reference
frame. Assume a ray starting at the origin of the ve-
hicle’s reference frame to be pitched toward (wI , yI).
The ray’s pitch, given in 14, is computed using the
camera’s pitch θC and the vehicle’s pitch θV :

θ =

(
1

2
− yu

)
· fy + θC + θV (14)

As a visual aid, θC and θV are shown in Figure 6,
and ψC and ψV are shown in Figure 7.

Figure 6: The camera and vehicle pitch angles

Similarly, the ray’s yaw is given in Equation 15.

ψ =

(
xu −

1

2

)
· fx + ψC + ψV (15)

In addition, the roll of this ray is φC + φV . The
ray’s roll has no component from the image, as this
can’t be extracted without known points of reference
in the image. Using this ray, a rotation matrix R
is constructed. A unit vector in the x-direction is
multiplied by R to produce a unit vector ~a directed

Figure 7: The camera and vehicle yaw angles

from the camera to (xI , yI , 0) in the image:

~a =< 1, 0, 0 > ×R (16)

~a is then scaled until its z is equal to the sum of the
camera’s height in the vehicle reference frame and the
vehicle’s height in the global frame zC+zV , producing
a vector ~b:

~b = ~a · zC + zV
~az

(17)

~b is now the camera-relative position vector for the
object of interest. Adding the position vectors of the
camera and vehicle finally yields the global position
vector for the object of interest.

7.2.3 Testing Procedure

Experimental testing is critical to ensure the above
math works correctly in all situations. To gather ex-

10

perimental data, mount a camera at a known roll,
pitch, and yaw. Place a small dot somewhere in the
camera frame. Record both the read-world location
of the small dot relative to the camera and the posi-
tion of the dot in camera coordinates. Create a test
case with all of this information.

7.3 Ground Robot Detection

7.4 Ground Robot Time To Edge

This section describes the algorithm used to calculate
the minimum time a Ground Robot will take to reach
an out of bounds edge of the arena. The algorithm
takes into account the randomized movement of the
Ground Robots and simplifies their trajectory using
a normal Gaussian distribution.

7.4.1 Ground Robot Movement

Ground Robots follow two rules for movement based
on an internal clock. Every five seconds a Ground
Robot modifies its orientation by random angle from
-20 to 20 degrees. Every 20 seconds a Ground Robot
modifies its orientation by 180 degrees, also known as
turning around. Starting from time zero, a Ground
Robot can modify its orientation three times before
turning around. This gives a span from -60 to 60
degrees from its original orientation. The random-
ized angles lead to a normal Gaussian distribution of
possible trajectories. The obvious implication is that
Ground Robots most often maintain the orientation
they started with.

7.4.2 Trajectory Prediction

• Uses two vectors at -45 degrees and 45 degrees

• Handles cases where shortest distance is along
vectors or along current trajectory

• Graphics of arena, ground robot, and prediction
vectors

• Confidence interval of falling within prediction
vectors

7.5 Localization

7.5.1 Introduction

The localization algorithm is used to correct the ve-
hicle’s idea of its position by looking at the arena
grid below it. This is achieved by extracting features
(points along gridlines) from the image of the grid,
then comparing these with the features the vehicle
would expect to see based on its current (and out-
dated) idea of its position.

7.5.2 Extracting Image Features

The first step is to find points along the gridlines in
the image taken of the arena grid. To do this we use
OpenCV to find contours in the image, then choose
points along these contours as the features.

7.5.3 Calculating Expected Features

The next step is to calculate a set of expected features
based on the vehicle’s current idea of its position and
orientation, and camera’s resolution and field of view.
To make the math work out a little bit better (and
by historical accident) a different coordinate system
in which the x axis points to the right, the y axis
forward, and z up is used for this step. The cam-
era’s position in this coordinate system is therefore
given by (x′, y′, z′) = (y, x,−z), and this position will
be the one referred to from here on when generat-
ing expected features. Also, for the purposes of fea-
ture generation the camera is assumed to be pointing
straight downward with the image plane parallel to
the ground, and so the only rotational information
used is the yaw angle ψ.

The first step in generating features is to compile
a transformation that can be used to convert coor-
dinates on the ground to coordinates in the image.
This transformation is comparable to the inverse of
the method discussed earlier for frame of reference
mapping, but is somewhat simpler because of the as-
sumption about the camera being oriented with the
ground. Specifically, this transformation is the com-
position of the following five transformations:

1. a translation to coordinates relative to the point

11

directly beneath the camera on the ground
(specifically, one by (−x,−y))

2. a rotation to align the coordinates with the cam-
era rather than the ground (one by −ψ)

3. a possibly-non-uniform scale to put the coordi-
nates in image units rather than ground units
(one by (rw/gw, rh/gh), where (rw, rh) are the
horizontal and vertical resolutions of the image
and (gw, gh) are the side lengths of the rectangle
covering the area of the ground that is visible to
the camera, which are calculated as (gw, gh) =
2z(tan(fw/2), tan(fh/2)), where (fw, fy) are the
horizontal and vertical fields of view).

4. a translation to move the origin from the
center of the image to the top left (one by
(rw/2,−rh/2))

5. a reflection about the x axis to make the y co-
ordinates oriented the correct way (implemented
as a scaling by (1,−1))

The second step in generating features is to enu-
merate the visible corners and to apply the trans-
formation calculated in the previous step to each of
them. In order to enumerate visible corners, the side
lengths (gw, gh) of the visible rectangle are calculated
as before and then those and the yaw angle ψ are
“normalized” by setting ψ to its floating-point re-
mainder with π (which produces an equivalent rect-
angle because of rotational periodicity and rectan-
gles’ rotational symmetry) and then by exchanging
gw and gh and subtracting π/2 from ψ if ψ ≥ π/2
(which also produces an equivalent rectangle because
the reflection cancels the rotation). The result of this
is a rectangle with side lengths (gw, gh) which is ro-
tated by an angle ψ ∈ [0, π/2). Besides the triv-
ial case where ψ = 0 and the rectangle is perfectly
aligned with the ground, there are essentially two dif-
ferent cases to handle now, as shown in Figure 8:

In every case, the lines l0, . . . , l3 are labeled in
counterclockwise order starting with the line that
would cross the -x axis (the left side) for ψ =
0 and the y coordinates of the corners are la-
beled yb, yr, yt, yl standing for “bottom”, “right”,

Figure 8: The two non-trivial cases for the “normal-
ized” visible ground rectangle

“top”, and “left” respectively in counterclockwise or-
der starting with the point in the third quadrant
(bottom-left) for ψ = 0. The values for these y coor-
dinates are given by:

yb = y − (gw/2) sinψ − (gh/2) cosψ

yl = y − (gw/2) sinψ + (gh/2) cosψ

yt = y + (gw/2) sinψ + (gh/2) cosψ

yr = y + (gw/2) sinψ − (gh/2) cosψ

Each of the lines is represented simply using slope-
intercept form x = my + b. Because each pair of op-
posite lines is parallel and their intercepts with the x
axis are symmetric, the line equations can be written
as:

xl0(y) = m1y − b1
xl1(y) = m2y + b2

xl2(y) = m1y + b1

xl3(y) = m2y − b2

where:

m1 = − tanψ

m2 = cotψ

b1 = (gw/2)(sinψ tanψ + cosψ)

b2 = (gh/2)(cosψ cotψ + sinψ)

With these formulas in place, the corners can be
enumerated in each of the three cases by stepping
through every grid line parallel to the x axis (which

12

are all at integral values of y) that is covered by the
viewable ground rectangle and then stepping hori-
zontally through every point in the rectangle on each
of those lines (which are at integral values of x). In
the trivial case, this is accomplished by stepping from
y = dybe to y = bytc and then from x = dx − gw/2e
to x = bx + gw/2c on each of those lines. For non-
trivial case a where yl < yr, as shown in Figure 8, this
is done by first stepping from y = dybe to y = bylc
and then from x = dxl0(y)e to x = bxl1(y)c along
each of those lines, then stepping from y = dyle to
y = byrc and from x = dxl3(y)e to x = bxl1(y)c, then
from y = dyre to y = bytc and from x = dxl3(y)e to
x = bxl2(y)c. Similarly, for non-trivial case b where
yr < yl, this is done by stepping from y = dybe to
y = byrc and from x = dxl0(y)e to x = bxl1(y)c,
then stepping from y = dyre to y = bylc and from
x = dxl0(y)e to x = bxl2(y)c, then from y = dyle to
y = bytc and from x = dxl3(y)e to x = bxl2(y)c.

7.5.4 Correcting the Position

Now we have a set of observed points and a set of
expected points based on our last known position, so
what we need to know now is how each point changed
in the time since our last position update. To do
this we need to find which of the observed points
correspond to which of the expected points. We do
this by calculating the closest observed point to each
of the expected points, and matching these points as
a corresponding pair.

We now have a set of features, and pairs of their
position at the last position update and their current
position. However, these position points are not in
the reference frame of the arena, but the reference
frame of the image from the camera at the time of
the last position update (i.e. the coordinates of the
points are in pixel units, not meters). The Frame of
Reference mapping algorithm described above is used
to get the position of these features in terms of the
arena reference frame.

To get the change in position of the vehicle, we
calculate an affine transformation matrix from the
feature positions. The transformation matrix T will

be of the form:

T =

cos(θ) −sin(θ) tx
sin(θ) cos(θ) ty

0 0 1


where θ is the angle of rotation, and tx, ty are the
translations in the x and y directions.

We now have a translation vector (tx, ty) from fea-
ture coordinates of our last position to feature coordi-
nates of our current position. The translation vector
is relative to the orientation of the vehicle, so it must
be rotated by the vehicle’s yaw angle to get an abso-
lute, global translation that can be used to update the
position. The translation is then subtracted from the
position, because the translation is for the features’
global coordinates, and the coordinates change in the
opposite direction that the vehicle moves (i.e. if the
vehicle moves left, it then sees the same coordinates
more to the right in the image).

7.5.5 Generating the Transformation Matrix

Because we are able to get accurate orientation in-
formation from the IMU, the algorithm for generat-
ing the affine transformation matrix becomes a bit
simpler, as it only needs to calculate the change in
position.

Let n be the total number of features (matched
coordinate pairs) that will be used to generate the
transformation. We create a 2n × 3 matrix A of the
form:

A =


E0,x · cos(ψ) + E0,y · −sin(ψ) 1 0
E0,x · sin(ψ) + E0,y · cos(ψ) 0 1
E1,x · cos(ψ) + E1,y · −sin(ψ) 1 0
E1,x · sin(ψ) + E1,y · cos(ψ) 0 1

...
...

...


where ψ is the vehicle’s yaw, and Ei,[xy] denotes the
x or y coordinate of the ith expected feature coordi-
nate.

In other words, this matrix is defined by the fol-

13

lowing:

Ai,1 = Ei,x · cos(ψ) + Ei,y · −sin(ψ), if i is even

Ai,1 = Ei−1,x · sin(ψ) + Ei−1,y · cos(ψ), if i is odd

Ai,2 = i mod 2

Ai,3 = 1− (i mod 2)

Next we create a vector b of the form:

b =


C0,x

C0,y

C1,x

C1,y

...


where Ci,[xy] denotes the x or y coordinate of the ith
camera feature coordinate.

By using the A and b matrices to solve the equa-
tion Ax = b, we get the 3 × 1 vector x, where x2 is
the translation in the x direction, and x3 is the trans-
lation in the y direction. This is the only information
we need from the x vector because we already have
a reliable source for the vehicle orientation. We can
create the transformation matrix T using the yaw ψ
and the translation x2, x3:

T =

cos(ψ) −sin(ψ) x2
sin(ψ) cos(ψ) x3

0 0 1


An important note about this algorithm is that it

requires at least 3 matched coordinate pairs to gen-
erate any useful results. With 2 or less we can’t gen-
erate an accurate transformation from one set to the
other.

8 Airframe

8.1 Propeller Guards

8.2 Landing Gear

References

[1] The Debian Administrator’s Handbook. Freexian,
2015. https://debian-handbook.info/.

[2] Axiomtek. PICO 831 User’s Manual.

[3] OpenCV Documentation. Camera Calibration
with OpenCV.

[4] PulsedLight, Inc. LIDAR-Lite Specifications.
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/LIDAR-
Lite-Laser-Datasheet.pdf.

[5] systemd Authors. systemd, 2016.
https://www.freedesktop.org/wiki/Software/systemd/.

14

	Introduction
	Reference Frames
	Arena Reference Frame
	Euler Angles
	Vehicle Reference Frame
	Using a Rotation Matrix

	Sensor Suite
	LiDAR Lite
	Logitech c920
	Microstrain 3DM-GX3-25 IMU
	Pixhawk Px4Flow
	Hokuyo URG-04LX-UG01

	Microcontrollers and Processors
	Atmel ATMEGA xx
	Axiomtek PICO831-N2800
	Texas Instruments TM123xx

	Electrical System
	Power System

	Control Software
	Flight Modes
	pid Control
	Kalman Filtering

	Navigation Software
	Field of View Transformation
	Frame of Reference Mapping
	Ground Robot Detection
	Ground Robot Time To Edge
	Localization

	Airframe
	Propeller Guards
	Landing Gear

